A Polynomial Translation of S 4 intoT and Contraction { Free
نویسندگان
چکیده
The concern of this paper is the study of automated deduction methods for propositional modal logics. We use tableau proof-systems to show that Fitting's translation of the transitive modal logic S4 into T can be constructed in deterministic polynomial time. This result is exploited in order to establish a polynomial bound to the length of branches in both tableau and sequent proof search for the transitive logics S4 and K4. This allows the elimination of \periodicity tests" when proving S4-validity; moreover, it provides directly a form of \contraction elimination result" in modal sequent calculi, in the sense that the number of contractions needed in a branch of a sequent proof need not exceed a given polynomial function of the endsequent. In order to obtain a complete contraction free fragment of the sequent calculus for S4, Mints' translation of modal formulae into modal clauses is used. Mints' notion of modal clause is also used to provide polynomial translations of S4 and K4 into K, by means of a preliminary (polynomial) rewriting of the input formulae into clausal form.
منابع مشابه
A Polynomial Translation of S4 into T and Contraction-Free Tableaux for S4
The concern of this paper is the study of automated deduction methods for propositional modal logics. We use tableau proof-systems to show that Fitting's translation of the transitive modal logic S4 into T can be constructed in deterministic polynomial time. This result is exploited in order to establish a polynomial bound to the length of branches in both tableau and sequent proof search for t...
متن کاملContracting Few Edges to Remove Forbidden Induced Subgraphs
For a given graph property Π (i.e., a collection Π of graphs), the Π-Contraction problem is to determine whether the input graph G can be transformed into a graph satisfying property Π by contracting at most k edges, where k is a parameter. In this paper, we mainly focus on the parameterized complexity of Π-Contraction problems for Π being H-free (i.e., containing no induced subgraph isomorphic...
متن کاملA Quasi-3D Polynomial Shear and Normal Deformation Theory for Laminated Composite, Sandwich, and Functionally Graded Beams
Bending analyses of isotropic, functionally graded, laminated composite, and sandwich beams are carried out using a quasi-3D polynomial shear and normal deformation theory. The most important feature of the proposed theory is that it considers the effects of transverse shear and transverse normal deformations. It accounts for parabolic variations in the strain/stress produced by transverse shea...
متن کاملON MULTIPHASE ALGORITHM FOR SINGLE VARIABLE EQUATION USING NEWTON'S CORRECTION METHOD
This paper brings to light a method based on Multiphase algorithm for single variable equation using Newton's correction. Newton's method is derived through the logarithmic differentiation of polynomial equation. A correction term which enhances the high speed of convergence is hereby introduced. A translation of Newton's method to Total Step and Single Step Methods (T. S. M and S. S. M) re...
متن کاملBending and Free Vibration Analysis of Functionally Graded Plates via Optimized Non-polynomial Higher Order Theories
Optimization concept in the context of shear deformation theories was born for the development of accurate models to study the bending problem of structures. The present study seeks to extend such an approach to the dynamic analysis of plates. A compact and unified formulation with non-polynomial shear strain shape functions (SSSFs) is employed to develop a static and free vibration analysis of...
متن کامل